The pigeonhole principle and multicolor Ramsey numbers
نویسندگان
چکیده
A standard proof of Schur's Theorem yields that any $r$-coloring $\{1,2,\dots,R_r-1\}$ a monochromatic solution to $x+y=z$, where $R_r$ is the classical $r$-color Ramsey number, minimum $N$ such complete graph on vertices triangle. We explore generalizations and modifications this result in higher dimensional integer lattices, showing particular if $k\geq d+1$, then $\{1,2,\dots,R_r(k)^d-1\}^d$ $x_1+\cdots+x_{k-1}=x_k$ with $\{x_1,\dots,x_d\}$ linearly independent, $R_r(k)$ analogous number which triangles are replaced by graphs $k$ vertices. also obtain computational results examples case $d=2$, $k=3$, $r\in\{2,3,4\}$.
منابع مشابه
On Some Multicolor Ramsey Numbers
The Ramsey number R(G1, G2, G3) is the smallest positive integer n such that for all 3-colorings of the edges of Kn there is a monochromatic G1 in the first color, G2 in the second color, or G3 in the third color. We study the bounds on various 3-color Ramsey numbers R(G1, G2, G3), where Gi ∈ {K3,K3 + e,K4 − e,K4}. The minimal and maximal combinations of Gi’s correspond to the classical Ramsey ...
متن کاملMulticolor Ramsey Numbers for Paths and Cycles
For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 8 is even and Cm is the cycle on m...
متن کاملA Lower Bound for Schur Numbers and Multicolor Ramsey Numbers
For k ≥ 5, we establish new lower bounds on the Schur numbers S(k) and on the k-color Ramsey numbers of K3. For integers m and n, let [m,n] denote the set {i |m ≤ i ≤ n}. A set S of integers is called sum-free if i, j ∈ S implies i + j 6∈ S, where we allow i = j. The Schur function S(k) is defined for all positive integers as the maximum n such that [1, n] can be partitioned into k sum-free set...
متن کاملA bound for multicolor Ramsey numbers
The Ramsey number R(G1; G2; : : : ; Gn) is the smallest integer p such that for any n-edge coloring (E1; E2; : : : ; En) of Kp; Kp[Ei] contains Gi for some i, Gi as a subgraph in Kp[Ei]. Let R(m1; m2; : : : ; mn):=R(Km1 ; Km2 ; : : : ; Kmn); R(m; n):=R(m1; m2; : : : ; mn) if mi=m for i=1; 2; : : : ; n. A formula is obtained for R(G1; G2; : : : ; Gn). c © 2001 Elsevier Science B.V. All rights re...
متن کاملMulticolor Ramsey numbers for triple systems
Given an r-uniform hypergraph H, the multicolor Ramsey number rk(H) is the minimum n such that every k-coloring of the edges of the complete r-uniform hypergraph K n yields a monochromatic copy of H. We investigate rk(H) when k grows and H is fixed. For nontrivial 3-uniform hypergraphs H, the function rk(H) ranges from √ 6k(1 + o(1)) to double exponential in k. We observe that rk(H) is polynomi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Involve
سال: 2022
ISSN: ['1944-4184', '1944-4176']
DOI: https://doi.org/10.2140/involve.2022.15.857